Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

cis-2,2-Dimethyl-1,3-diphenyl-2,3-dihydro-1H-benzo[c]silole

Amanda J. Watson, Stephen K. Cope, Daniel S. Jones* and Craig A. Ogle*

Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
Correspondence e-mail: djones@uncc.edu, cogle@uncc.edu

Received 23 May 2007; accepted 23 June 2007

Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.045 ; w R$ factor $=0.142 ;$ data-to-parameter ratio $=15.6$.

The title compound, $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{Si}$, is a benzosilacyclopentene in which the silacyclopentene ring assumes an envelope conformation. The Si atom is displaced by 0.722 (4) \AA from the mean plane of the four C atoms, and is bonded to two methyl groups and to two Csp^{3} atoms in the silacyclopentene ring. One phenyl ring is attached to each of these two C atoms in a cis configuration. The Si atom and the two methyl groups lie on a crystallographic mirror plane which relates the two halves of the molecule. The average $\mathrm{Si}-\mathrm{C}_{\text {methyl }}$ bond distance is 1.852 (3) \AA. The $\mathrm{Si}-\mathrm{Csp} p^{3}$ bond distance is 1.886 (2) \AA, and the corresponding $\mathrm{Csp}^{3}-\mathrm{Si}-\mathrm{Csp}{ }^{3}$ angle is $93.0(1)^{\circ}$. The displacement ellipsoids for the atoms in the fused benzene ring suggest a probable disorder, but no satisfactory disorder model could be found.

Related literature

This structure can be compared with one structure in the Cambridge Structural Database [Version 5.28; (Allen, 2002); ConQuest, Version 1.9 (Bruno et al., 2002)] having the same fused ring system, 2,2-diphenyl-2-silaindane (Vidal \& Falgueirettes, 1973), and with one recently published structure from this laboratory, cis-1,2,2,3-tetraphenyl-2,3-dihydro-1H-2benzosilole (Duong et al., 2006). See also: Bates et al. (1981); Mataka et al. (1981); Sato et al. (2001).

Experimental

Crystal data
$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{Si}$
$M_{r}=314.49$
Orthorhombic, Pcmn
$a=6.6298$ (7) \AA
$b=14.6001$ (18) \AA
$c=18.984$ (3) A
Data collection
Enraf-Nonius CAD-4
diffractometer
Absorption correction: analytical (Alcock, 1970)
$T_{\text {min }}=0.667, T_{\text {max }}=0.875$
1720 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.142$
$S=1.05$
1720 reflections

$$
\begin{aligned}
& V=1837.6(4) \AA^{3} \\
& Z=4 \\
& \mathrm{Cu} \mathrm{~K} \mathrm{\alpha} \text { radiation } \\
& \mu=1.08 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& 0.44 \times 0.37 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

1720 independent reflections
1310 reflections with $I>2 \sigma(I)$
3 standard reflections frequency: 60 min intensity decay: none

110 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.18 \mathrm{e} \mathrm{A}^{-3}$

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported in part by funds provided by the University of North Carolina at Charlotte.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2035).

References

Alcock, N. W. (1970). In Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, p. 271. Copenhagen: Munksgaard.

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bates, R. B., Hess, B. A. Jr, Ogle, C. A. \& Schaad, J. (1981). J. Am. Chem. Soc. 103, 5052-5058.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Duong, L. C., Cope, S. K., Jones, D. S. \& Ogle, C. A. (2006). Acta Cryst. E62, o3574-o3576.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Mataka, S., Tsuda, Y., Takahashi, K. \& Tashiro, M. (1981). Org. Prep. Proced. Int. 13, 93-96.
Sato, R., Takeda, E., Nakajo, S., Kimura, T., Ogawa, S. \& Kawai, Y. (2001). Heteroat. Chem. 12, 209-216.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Vidal, J. P. \& Falgueirettes, J. (1973). Acta Cryst. B29, 263-269.

supplementary materials

cis-2,2-Dimethyl-1,3-diphenyl-2,3-dihydro-1H-benzo [c]silole

A. J. Watson, S. K. Cope, D. S. Jones and C. A. Ogle

Comment

The Si atom is bonded to two methyl groups and to two $\mathrm{Csp}{ }^{3}$ atoms in the silacyclopentene ring; one phenyl ring is attached to each of these two Csp^{3} atoms in the cis configuration. The Si atom and the carbon atoms of the two methyl groups lie in a crystallographic mirror plane which relates the two halves of the structure. The average Si-methyl bond distance is 1.852 (3) \AA. The $\mathrm{Si}-\mathrm{Csp}^{3}$ bond distance is 1.886 (2) \AA, and the corresponding $\mathrm{Csp}{ }^{3} — \mathrm{Si}-\mathrm{Csp}{ }^{3}$ angle is 93.0 (1) ${ }^{\circ}$. The silacyclopentene ring assumes an envelope conformation, with the Si atom displaced 0.722 (4) \AA from the mean plane of the four carbon atoms.

This structure can be compared to one structure in the Cambridge Structural Database (Version 5.28, ConQuest Version 1.9; Allen, 2002) having the same fused ring system, 2,2-Diphenyl-2-sila-indan (Vidal \& Falgueirettes, 1973) and to one recently published structure from this laboratory,cis-1,2,2,3-tetraphenyl-2,3-dihydro-1H-benzo[c]silole (Duong et al., 2006).

The 2,2-diphenyl-2-sila-indan has hydrogen atoms on the silacyclopentene ring where the title structure has phenyl rings, and has phenyl rings on the Si where the title structure has methyl groups. The average $\mathrm{Si}-\mathrm{Csp}{ }^{3}$ distance is $1.886 \AA$, and the corresponding $\mathrm{Csp}{ }^{3} — \mathrm{Si}-\mathrm{Csp}{ }^{3}$ angle is 93.59°. The silacyclopentene ring assumes an envelope conformation, with the Si atom displaced $0.636 \AA$ from the mean plane of the four carbon atoms.

The cis-1,2,2,3-tetraphenyl-2,3-dihydro- $1 H$-benzo[c]silole has phenyl rings on the Si atom, where the title structure has methyl groups. The average $\mathrm{Si}-\mathrm{Csp}^{3}$ distance is 1.902 (2) \AA, and the corresponding $\mathrm{Csp}{ }^{3} — \mathrm{Si}-\mathrm{Csp}{ }^{3}$ angle is 90.68 (7) \AA. The silacyclopentene ring assumes an envelope conformation, with the Si atom displaced 0.953 (2) \AA from the mean plane of the four carbon atoms.

Experimental

Compound (3) was prepared in a model reaction for the preparation of new phosphine ligands of similar structure via dicarbanions (Bates et al., 1981). The two-step synthesis is outlined below.

The first step prepares the carbon diacid, (1), by Friedel-Crafts alkylation of benzene with α, α^{\prime}-dichloro- o-xylene (Mataka et al.,1981). The carbon acid is bislithiated using two equivalents of n-butyl lithium and tetramethylethylenediamine (TMEDA) to give the deep-red dicarbanion, (2) (Sato et al., 2001), which, upon reaction with diphenyldichlorosilane, gives the title compound, (3). The major isomer is the crystalline cis-isomer. The compound has been also characterized by both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy.

Compound (1), the precursor to the title compound, was prepared by charging a dry 250 ml two-necked round-bottomed flask, equipped with a stirrer bar, a reflux condenser and a gas inlet adapter, with α, α '-dichloro- o-xylene ($50 \mathrm{mmol}, 8.75 \mathrm{~g}$), dry benzene $(100 \mathrm{ml})$ and nitromethane $(10 \mathrm{ml})$ under N_{2}. Subsequently, $\mathrm{AlCl}_{3}(20.0 \mathrm{~g}, 150 \mathrm{mmol})$ was added to the flask.

supplementary materials

The nitrogen line was removed and replaced with a drying tube, and the mixture was allowed to react for 30 min without external heating. External heat was then applied and the mixture was refluxed overnight. The reaction was then quenched with water and the phases separated. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After solvent removal under a vacuum, the residue was purified by bulb-bulb distillation ($393 \mathrm{~K}, 1 \mathrm{~Pa}$) Further purification was accomplished by recrystallization from isooctane ($11.2 \mathrm{~g}, 87 \%$ yield; m.p. 346-347 K).

For the preparation of (3), compound (1) $(0.52 \mathrm{~g}, 2.0 \mathrm{mmol})$ was placed in an oven-dried vial equipped with a stirrer bar. After purging with N_{2}, a septum was attached. Dry degassed $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{ml})$ was introduced viaa syringe. A positive pressure of N_{2} gas was maintained as the vial was cooled to 273 K , and TMEDA ($0.51 \mathrm{~g}, 4.4 \mathrm{mmol}$) followed by $\mathrm{n}-\mathrm{BuLi}(1.61 \mathrm{ml}$, $2.74 M$, solvent = hexanes, 4.4 mmol) were introduced via syringe. A deep-red color was observed almost immediately upon addition of the $\mathrm{n}-\mathrm{BuLi}$. The reaction was quenched after 30 min with dichlorodimethylsilane ($0.28 \mathrm{~g}, 2.2 \mathrm{mmol}$). Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added 30 min later. The organic layer was separated and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. It was then reduced under vacuum and purified by bulb-bulb distillation ($433 \mathrm{~K}, 1 \mathrm{~Pa}$) to give 0.82 g of (3) (94% yield; m.p. $375-376 \mathrm{~K}$). X-ray quality crystals of (3) were obtained by recrystallization from iso-octane.

Refinement

H atoms were constrained using a riding model. The aromatic $\mathrm{C}-\mathrm{H}$ bond lengths were fixed at $0.93 \AA$, the methine $\mathrm{C}-\mathrm{H}$ bond lengths at $0.98 \AA$, and the methyl $\mathrm{C}-\mathrm{H}$ bond lengths at $0.96 \AA$, with $U_{\mathrm{iso}}(\mathrm{H})=1.5 \mathrm{U}_{\text {eq. }}$. (C). The orientation of the methyl groups was fixed by the location of the methyl carbons on a crystallographic mirror plane. The thermal ellipsoids for the atoms in the fused aromatic ring suggest a probable disorder, but no satisfactory disorder model could be found. Attempts to refine the structure in the equivalent non-centrosymmetric space group $\mathrm{Pc} 2{ }_{1} \mathrm{n}$ gave results that were neither chemically nor crystallographically reasonable.

Figures

Fig. 1. View of (3) (30\% probability displacement ellipsoids)

Fig. 2. The reaction scheme for the formation of (3)

cis-2,2-Dimethyl-1,3-diphenyl-2,3-dihydro-1 H-benzo[c]silole

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{Si}$
$F_{000}=672$
$M_{r}=314.49$
Orthorhombic, Pcmn
$D_{\mathrm{x}}=1.137 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation

Hall symbol: -P 2n 2ac
$a=6.6298$ (7) \AA
$b=14.6001(18) \AA$
$c=18.984(3) \AA$
$V=1837.6(4) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4
diffractometer
non-profiled $\omega / 2 \theta$ scans
Absorption correction: analytical
(Alcock, 1970)
$T_{\text {min }}=0.667, T_{\text {max }}=0.875$
1720 measured reflections
1720 independent reflections
1310 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.142$
$S=1.05$
1720 reflections
110 parameters
$\lambda=1.54184 \AA$
Cell parameters from 20 reflections
$\theta=11.5-18.5^{\circ}$
$\mu=1.08 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, colorless
$0.44 \times 0.37 \times 0.12 \mathrm{~mm}$
$\theta_{\text {max }}=67.4^{\circ}$
$\theta_{\min }=4.7^{\circ}$
$h=-7 \rightarrow 0$
$k=-17 \rightarrow 0$
$l=-22 \rightarrow 0$
3 standard reflections
every 60 min
intensity decay: none

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0863 P)^{2}+0.3313 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.29 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.18$ e \AA^{-3}
Extinction correction: SHELXL97,
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0026 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Si	$1.00957(10)$	0.25	$0.13620(4)$	$0.0515(3)$	
C5	$0.8661(4)$	0.25	$0.21997(15)$	$0.0645(8)$	
H5A	0.7241	0.25	0.21	0.097^{*}	
H5B	0.8999	0.3037	0.2467	0.097^{*}	0.5
H5C	0.8999	0.1963	0.2467	0.097^{*}	0.5
C2	$0.7492(3)$	$0.20189(16)$	$0.03756(10)$	$0.0672(6)$	
C3	$0.5952(4)$	$0.1549(3)$	$0.00241(12)$	$0.1027(11)$	
H3	0.5936	0.0912	0.0022	0.123^{*}	
C11	$1.0430(5)$	$-0.00202(19)$	$0.10173(13)$	$0.0865(8)$	
H11	1.1573	0.0101	0.0749	0.104^{*}	
C1	$0.9257(3)$	$0.15629(15)$	$0.07440(10)$	$0.0622(5)$	
H1	1.0325	0.1493	0.0391	0.075^{*}	

C6	$1.2841(4)$	0.25	$0.15403(18)$	$0.0797(10)$	
H6A	1.3565	0.25	0.1102	0.12^{*}	
H6B	1.3191	0.1963	0.1806	0.12^{*}	0.5
H6C	1.3191	0.3037	0.1806	0.12^{*}	0.5
C12	$0.8956(4)$	$0.06378(16)$	$0.10762(11)$	$0.0712(6)$	
C8	$0.7113(7)$	$-0.0404(2)$	$0.18266(18)$	$0.1241(14)$	
H8	0.5994	-0.0529	0.2106	0.149^{*}	
C9	$0.8601(8)$	$-0.1040(2)$	$0.17542(16)$	$0.1250(15)$	
H9	0.8491	-0.1602	0.1983	0.15^{*}	
C7	$0.7269(5)$	$0.04360(18)$	$0.14819(16)$	$0.0995(10)$	
H7	0.6237	0.0864	0.1524	0.119^{*}	
C10	$1.0243(6)$	$-0.0860(2)$	$0.13505(16)$	$0.1103(12)$	
H10	1.1244	-0.13	0.1298	0.132^{*}	
C4	$0.4468(4)$	$0.2028(3)$	$-0.03172(13)$	$0.145(2)$	
H4	0.345	0.1712	-0.0551	0.174^{*}	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si	$0.0357(4)$	$0.0655(5)$	$0.0534(4)$	0	$0.0025(3)$	0
C5	$0.0529(16)$	$0.0787(19)$	$0.0620(16)$	0	$0.0082(13)$	0
C2	$0.0436(10)$	$0.1097(15)$	$0.0484(9)$	$-0.0059(10)$	$0.0059(8)$	$-0.0133(10)$
C3	$0.0616(14)$	$0.178(3)$	$0.0687(14)$	$-0.0240(18)$	$0.0050(12)$	$-0.0470(17)$
C11	$0.100(2)$	$0.0879(17)$	$0.0718(15)$	$0.0113(15)$	$0.0050(13)$	$-0.0105(13)$
C1	$0.0487(10)$	$0.0772(13)$	$0.0607(11)$	$-0.0013(10)$	$0.0120(8)$	$-0.0116(10)$
C6	$0.0421(15)$	$0.129(3)$	$0.0677(18)$	0	$-0.0002(13)$	0
C12	$0.0781(14)$	$0.0706(13)$	$0.0648(12)$	$-0.0078(11)$	$0.0143(11)$	$-0.0193(10)$
C8	$0.175(4)$	$0.0878(19)$	$0.109(2)$	$-0.052(2)$	$0.050(2)$	$-0.0214(17)$
C9	$0.224(5)$	$0.0742(17)$	$0.0771(17)$	$-0.025(2)$	$0.005(2)$	$-0.0094(15)$
C7	$0.110(2)$	$0.0760(15)$	$0.113(2)$	$-0.0233(15)$	$0.0435(18)$	$-0.0219(15)$
C10	$0.165(4)$	$0.0845(19)$	$0.0815(18)$	$0.020(2)$	$-0.008(2)$	$-0.0071(15)$
C4	$0.0609(14)$	$0.314(8)$	$0.0594(13)$	$-0.028(2)$	$-0.0092(10)$	$-0.036(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Si}-\mathrm{C} 6$	$1.851(3)$	$\mathrm{C} 1-\mathrm{C} 12$	$1.504(3)$
$\mathrm{Si}-\mathrm{C} 5$	$1.853(3)$	$\mathrm{C} 1-\mathrm{H} 1$	0.98
$\mathrm{Si}-\mathrm{C} 1$	$1.886(2)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.96
$\mathrm{Si}-\mathrm{C} 1^{\mathrm{i}}$	$1.886(2)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.96
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.96	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	0.96
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.96	$\mathrm{C} 12-\mathrm{C} 7$	$1.390(3)$
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	0.96	$\mathrm{C} 8-\mathrm{C} 9$	$1.362(5)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.400(3)$	$\mathrm{C} 8-\mathrm{C} 7$	$1.394(4)$
$\mathrm{C} 2-\mathrm{C} 2 \mathrm{i}$	$1.405(5)$	$\mathrm{C} 8-\mathrm{H} 8$	0.93
$\mathrm{C} 2-\mathrm{C} 1$	$1.517(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.357(5)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.370(5)$	$\mathrm{C} 9-\mathrm{H} 9$	0.93
$\mathrm{C} 3-\mathrm{H} 3$	0.93	$\mathrm{C} 7-\mathrm{H} 7$	0.93
$\mathrm{C} 11-\mathrm{C} 12$	$1.375(3)$	$\mathrm{C} 10-\mathrm{H} 10$	0.93

sup-4

supplementary materials

C11-C10	1.385 (4)	$\mathrm{C} 4-\mathrm{C} 4{ }^{\text {i }}$	1.380 (9)
C11-H11	0.93	C4-H4	0.93
C6-Si- 55	110.35 (15)	$\mathrm{Si}-\mathrm{C} 1-\mathrm{H} 1$	106.7
C6-Si-C1	113.80 (9)	$\mathrm{Si}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	109.5
C5-Si-C1	112.48 (9)	Si-C6-H6B	109.5
C6-Si- $\mathrm{Cl}^{\text {i }}$	113.80 (9)	H6A-C6-H6B	109.5
C5-Si- $\mathrm{Cl}^{\text {i }}$	112.48 (9)	$\mathrm{Si}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	109.5
C1-Si- $\mathrm{Cl}^{\text {i }}$	93.00 (14)	H6A-C6-H6C	109.5
$\mathrm{Si}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.5	H6B-C6-H6C	109.5
$\mathrm{Si}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	109.5	C11-C12-C7	118.0 (2)
H5A-C5-H5B	109.5	C11-C12-C1	120.0 (2)
$\mathrm{Si}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	109.5	C7-C12-C1	122.0 (2)
H5A-C5-H5C	109.5	C9-C8-C7	119.9 (3)
H5B-C5-H5C	109.5	C9- $\mathrm{C} 8-\mathrm{H} 8$	120
C3-C2-C2 ${ }^{\text {i }}$	119.36 (19)	C7-C8-H8	120
C3-C2-C1	124.6 (3)	C10-C9-C8	120.3 (3)
$\mathrm{C} 2{ }^{\mathrm{i}}-\mathrm{C} 2-\mathrm{C} 1$	116.03 (12)	C10-C9-H9	119.8
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	120.0 (4)	C8-C9-H9	119.8
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120	C12-C7-C8	120.4 (3)
C2-C3-H3	120	C12-C7-H7	119.8
C12-C11-C10	121.2 (3)	C8-C7-H7	119.8
C12-C11-H11	119.4	C9-C10-C11	120.1 (3)
C10-C11-H11	119.4	C9-C10-H10	119.9
C12-C1-C2	119.02 (18)	C11-C10-H10	119.9
$\mathrm{C} 12-\mathrm{C} 1-\mathrm{Si}$	115.46 (14)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4{ }^{\text {i }}$	120.7 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Si}$	101.29 (14)	C3-C4-H4	119.7
C12-C1-H1	106.7	$\mathrm{C} 4{ }^{\mathrm{i}}-\mathrm{C} 4-\mathrm{H} 4$	119.7
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	106.7		
Symmetry codes:			

Fig. 1

Fig. 2

